- CopyOnWriteArrayList
- ConcurrentHashMap
- hashTable
- TreeMap,TreeSet
- ReentrantLock
- ThreadPoolExecutor
- LinkedBlockedQueue
CopyOnWriteArrayList
jdk中对Collection操作有一个共识:就是在循环中是不能对列表做修改的。前几天写个小工具,要求对一个List做遍历,并在遍历过程中向List添加元素。翻了Collection的子类之后,发现CopyOnWriteArrayList
可以解决这个问题。
看下其中的add方法:
/** The array, accessed only via getArray/setArray. */
private transient volatile Object[] array;
/**
* Gets the array. Non-private so as to also be accessible
* from CopyOnWriteArraySet class.
*/
final Object[] getArray() {
return array;
}
/**
* Appends the specified element to the end of this list.
*
* @param e element to be appended to this list
* @return {@code true} (as specified by {@link Collection#add})
*/
public boolean add(E e) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] elements = getArray();
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len + 1);
newElements[len] = e;
setArray(newElements);
return true;
} finally {
lock.unlock();
}
}
/**
* Sets the array.
*/
final void setArray(Object[] a) {
array = a;
}
首先,CopyOnWriteArrayList
对内部数组的操作通过getArray
和setArray
进行。当需要向数组中添加元素时,通过 Object[] newElements = Arrays.copyOf(elements, len + 1);
创建一个原数组的拷贝,在向新数组中添加元素后,将内部数组指向新数组的引用。
同时对CopyOnWriteArrayList
对象的任何修改都需要首先获取到对象锁:final transient ReentrantLock lock = new ReentrantLock();
从而保证了线程的安全性。
ConcurrentHashMap
- 根据key做hash后,进行分段,不同段使用不同的锁控制,提高并发访问效率;另外当需要rehash的时候,只对某个分段做rehash
- 所有需要共享的变量使用volitale关键字,乐观锁提高了并发量
hashTable
各个方法使用synchronized修饰来保证多线程并发访问的安全,效率较低
TreeMap,TreeSet
一个基于红黑树实现的有序的map和set,线程不安全
ReentrantLock
ReentrantLock的锁的控制是通过AbstractQueuedSynchronizer类的子类(abstract static class Sync extends AbstractQueuedSynchronizer
)实现的。
Sync类提供的方法有:
- 锁定:
abstract void lock()
- 获取锁:
final boolean nonfairTryAcquire(int acquires)
- 释放锁:
protected final boolean tryRelease(int releases)
- 判断当前线程是否获得当前锁:
protected final boolean isHeldExclusively()
,如果当前锁由当前线程获得,则返回true - 新建condition:
final ConditionObject newCondition()
- 查询获得当前锁的线程:
final Thread getOwner()
。其中的getExclusiveOwnerThread()方法来自AbstractOwnableSynchronizer
,在这个类中有一个属性private transient Thread exclusiveOwnerThread;
用来表示当前获取排他锁的线程。 - 查询锁定的次数:
final int getHoldCount()
,0代表未被当前线程获得锁 - 查询是否是锁定状态:
final boolean isLocked()
,getState为0代表未锁定 - 反序列化:
private void readObject(java.io.ObjectInputStream s)
通过Sync的一个实例来实现线程控制,根据Sync的实现的不同,分为公平锁和不公平锁两种,这两种锁的实现如下:
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
acquire(1);
}
/**
* Fair version of tryAcquire. Don't grant access unless
* recursive call or no waiters or is first.
*/
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
公平锁和sychronized类似,根据获取锁的先后顺序执行
对不公平锁,在执行lock()函数时,首先利用cas进行锁定,如果锁定成功,直接插入,否则,正常等待锁释放。
在创建ReentrantLock实例时,默认是不公平锁
相比sychronized的特性:
- 在获取锁的时候,如果获取不到可直接返回;避免阻塞线程
- 可设置优先级,中断正在执行的线程
- 将锁的相关信息以对象的形式做封装,可以获取到当前锁的信息,如等待的线程队列,当前获取锁的线程等
ThreadPoolExecutor
private final BlockingQueue<Runnable> workQueue;
:存放任务
execute
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
- 获取当前线程数,如果小于核心线程数,则执行addWorker操作
- 如果当前标示线程池未销毁,并且当前任务队列存在空余位置 2.1. 再次check,如果当前线程池未运行,并且当前任务可成功移除,拒绝当前任务 2.2. 如果再次check,核心线程已满,重新起线程做addWork操作
- 如果条件2不成立 3.1. 新建线程执行addWork操作 3.2. 如果3.1失败,拒绝当前任务
addWorker首先再次核对当前的线程池状态,跟任务列表,如果可以执行,则添加任务到任务列表中,并且启动线程
在向任务队列中添加任务时,使用ReentraintLock做并发控制(因为这里的workers的类型是HashSet,不能保证并发的安全问题,根据HashSet文档,通过Set s = Collections.synchronizedSet(new HashSet(...));
可以保证并发安全)
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
每个Worker实例是一个Runnable子类
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
` while (task != null || (task = getTask()) != null)在while循环中,从当前的
BlockingQueue
LinkedBlockedQueue
通过ReentrantLock的Condition实现添加和删除的等待。